

ENERGY CONSERVATION & MANAGEMENT

CARRIAGE & WAGON WORKSHOP, NORTHERN RAILWAY, KALKA, HARYANA

SUDHANSU PANWAR Chief Workshop Manager G C SINGH Dy. Chief Mech. Engineer Jyoti Sahu Assistant Workshop Manager

MILESTONE OF KALKA WORKSHOP

ACTIVITIES PERFORMED & COMPANY PROFILE

LAYOUT PLAN OF KALKA WORK SHOP

NG COACHES

NG WAGON

Rail Motor Car

NG COACHES

NG WAGON

WOGIE FOR NG ROLLING STOCK

BREAK BLOCK

NG BRONZE BEARING

MISC. ITEMS

Sustaining heritage values of workshop

TURNING OF NG WHEEL

MISC. ITEMS LIKE FLAP DOOR, DUSTBIN & OTHER KEY PART

Description	Utility
TOTAL AREA	3.98 Acre
COVERED AREA	2.12 Acre
RAIL TRACK LENGTH	0.76 KM (Inside)
TOTAL M&P	156 Nos.
WORK FORCE	403
BUDGET ALLOTTED	Rs.34.56 Crore
RENEWABLE ENERGY SOURCE	300 Kwp SOLAR PANEL
TOTAL ENERGY CONSUMPTION	120.9 MTOE
MAXIMUM ENERGY DEMAND	900 KVA

MAJOR ENERGY CONSUMING EQUIPMENT

MONTHLY ENERGY(ELECT & THERMAL) CONSUMPTION PATTERN IN 3 YEARS

MONTHLY ENERGY CONSUMPTION PATTERN IN LAST 3 YEAR

• In APR 2020, the reduced energy consumption is observed due to closure of Foundry Shop during the COVID-19 lockdown.

In JUNE 2020, the consumption increased due to sudden demand spike of brake blocks.

In NOV & DEC -21, the variation is concerned with less operation & production in foundry shop due to less stock of hard cock.

SOURCE WISE ENERGY CONSUMPTION PATTERN IN 3 YEARS (IN MOTE)

SPECIFIC ELECTRICAL ENERGY CONSUMPTION (KgOE / Eq. Outturn)

SEC REDUCTION by <u>19.7</u> % w.r.t BASE YEAR 2019-20 IS ACHIEVED THROUGH :

- Replacement of 3 nos. conventional welding sets with IGBT based welding set.
- Use of released 35cfm (14hp) air compressors for localized use in place of large compressors.
- Replacement of 1 no. old milling lathe machine with new universal milling lathe machine.
- Add **50 Kvar power capacitor** for pf correction.
- Review the pattern's design of aluminum bar casting for manufacturing of Pre-shortner
- use of timer switch for boundary wall lights.
- Replacement of 10 nos. wall mounted air circulators.
- Using of renewable energy 300 KWp solar plant

SPECIFIC THERMAL ENERGY CONSUMPTION (KgOE / Eq. Outturn)

SEC REDUCTION BY <u>26.4 %</u> w.r.t BASE YEAR 2019 -20 IS ACHIEVED THROUGH :

- Replacement of 50 nos. Cl pulley with Fabricated type pulley.
- Using of 01 no. Air plasma cutting in place of Oxy – acetylene cutting.
- Using of sira in manufacturing of core for Molding.
- Insure appropriate proportion of material during charging of cupola furnace.
- Replacement of 01 no. diesel operated fork lift with battery operated fork lift.

NATIONAL BENCH MARKING & TARGET SETTING

S. No	WORKSHOP NAME	Specific Electrical Energy Consumption (KWH/ECU)	Specific Thermal Energy Consumption (Kcal/ECU)
1	JAGADHRI WORKSHOP, NR	409.88	195036
2	AJMER WORKSHOP, NWR	797	288939
3	DLMW, PATIALA	13600	14625336
4	KALKA WORKSHOP , NR	417	968999.4

Kalka Workshop's caters to POH activities of only Narrow Gauge Coaches. We strive to reduce the Specific consumption in coming years.

Target setting by Internal Bench making (in MOTE)

	20	2021-22		2022-23		2023-24		2024-25	
Dataila	SEC	SEC	SEC	Reduction w.r.t	SEC	Reduction w.r.t	SEC	Reduction w.r.t	
Details	Target	Achieved	Target	previous year	Target	previous year	Target	previous year	
KLK/ELEC	37.8	32.66	31.77	3 %	30.2	5 %	28.5	5 %	
KLK/THERMAL	118	88.26	85.61	3 %	81.33	5.3 %	74.1	9%	
Kalka W/shop (TOTAL)	155.8	120.92	117.38	3 %	111.5	5 %	102.6	8%	
Over All Targeted Reduction w.r.t Base Year 2021-22								15 %	

ROAD MAP OF TARGET TO REDUCE SEC

SHORT TERM TARGETS **Estimated SN Project** Qty **Annual savings** Installation of APFC, Cap: 200 Kvar.(as recommendation of energy Audits report) 1 91391 1 Replacement Existing Non Star ACs with 5 Star Rated ACs. (recommendation of energy Audits report) 2 5 10305 Provision of Solar street lights 3 12 1577 Provision of Solar tube Lights 4 8 1489 Provision of timer switch boundary wall lights 5 1 960 Replacement of old aluminium wiring with copper wiring & proper switching 6 Energy (thermal & Electrical) Audits by BEE certified External auditor 7 Electric arc furnace 66 M Kcal 8 1 **MID TERM TARGETS IGBT Based welding Sets** 1 4 31468 Provision of Online EMS system 2 25 Provision of Energy monitoring system of all machine having load above 10HP 3 10 LONG TERM TARGETS Replacement of reciprocating air compressor with energy efficient screw compressor 42316 1 1 Installation of 200kWp Solar PV panels on the roof tops of the shed (RESCO – Model) 3 3 2.0 Lakh

NORTHERN RAILWAY WORKSHOP 1903 KALKA

SN	Action Taken	Qty	Annual Saving (kWh)	Saving @ Rs. 8.7/kWh (Lakh of Rs.)
1	Provision of astronomical timer for boundary wall light	1 No.	1000	0.08
2	Replacement of 3 nos. oil cooled conventional type welding plant with IGBT based welding set	3 Nos.	43000	3.7
3	Provision of Energy Saver on Welding Plant	2 Nos.	13000	1.13
4	Replacement of old lathe machine with new universal milling machine	1	12000	1.03
5	Replacement of old ACs with 5 star energy efficient Air conditioner in NG coach	12	_	_

ENERGY SAVING PROJECT IMPLEMENTED IN 2021 -22

SN	ACTION TAKEN	QTY	ANNUAL SAVING (KWH)	SAVING @ RS. 8.7/KWH (LAKH OF RS.)
1	Use of released 35cfm (14hp) air compressors for localized use in place of large compressors. Nil Investment.	01 location	20000	1.74
2	Entered in PPA for Installation of 300 KWp rooftop SPV Panels and purchase of energy @ Rs 3.38 for 25 years. Nil Investment.	03 Sheds	347476	18.0
3	Use of fabricated pulley in place of CI pulley for alternator driving in NG coach	50 Nos.	20 M kcal	0.089
4	Design change of pattern of aluminum bar casting for pre- shortener		5440	0.05
5	Replacement of old AC , 1.0 ton	1	2000	0.024
6	Replacement of old AC , 1.5 ton	1	2732	0.024
7	Replacement of oil cooled conventional type welding set with IGBT based welding set	4	25743	2.22
8	Provision of Air plasma cutting machine	1	-	-

UTILIZATION OF RENEWABLE ENERGY SOURCE

ON LINE SOLAR ENERGY DATA LOGGER

Provision of Renewable solar energy systems Onsite, 300 KWp at Kalka Workshop

Translucent roofing sheets (100 %) have been provided in sheds to use natural light. Annual Equivalent Savings : 3,000 KWh

NORT

Renewa	Renewable energy systems Onsite in last 3 years							
YEA	R		2019	-20	2020-21	2021-22		
Thermal Energy (in <u>MTOe</u>)		112.06		97.16	88.28			
Electrical Energy (in MTOe)		37.9	96	35.39	32.66			
Total Energy Usa	ge (MTOe	2)	150.	02	132.55	120.94		
Equivalent Outto	urn Unit		85	1	905	911		
RE Utilized (in <u>MTOe</u>)			23.3	83	21.68	22.45		
RE Generated (in <u>MTOe</u>)		28.29		25.82	29.73			
% Substitution of RE			<mark>18.86</mark>		<mark>19.48</mark>	<mark>24.79</mark>		
% Increase in RE Substitution from base year 2019-20		ion	-		3.3	31.5		
SOURCE OF RENEWBALE ENERGY	YEAR	INV	VESTEMENT MODE	INSTALLED CAPACITY	ANNUAL POWER GENERATION (IN LAC KWH)	% OF RE SUBSTITUTE OF TOTAL ELECTRICAL ENERGY CONSUMPTION		
ON SITE ROOF	2019-20	ι	JNDER	300 KWp	3.3	62.78%		
TOP SOLAR PV	2020-21	RESCO MODEL	300 KWp	3.0	61.27 %			
2021-22			300 KWp	3.5	68.74%			
IN PIPE LINE (PROPOSAL OF SOLAR PV PANEL)	2021-22	ا RES	JNDER CO MODEL	200 KWp	2.0 (ESTIMATED)	100 %		

GHG EMISSION INVENTORISATION

Total Specific GHG Emissions (Scope- 1& 2)					
Description	Units	2019-20	2020-21	2021-22	50
Scope 1 Emissions	Ton of CO2 e	518.51	453.48	447.69	
Specific GHG Emissions of Scope - 1	(MT of CO ₂ e/Out-turn)	0.61	0.50	0.49	3(
Scope 2 Emissions	Ton of CO2 e	129.56	125.61	94.01	2
Specific GHG Emissions of Scope - 2	(MT of CO ₂ e/Out-turn)	0.15	0.14	0.10	1
Total Emissions (Scope – 1&2)	MT of CO2 e	648.07	579.09	541.70	
Specific GHG Emissions (Scope1& 2)	(MT of CO ₂ e/Out-turn)	0.76	0.64	0.59	
Annual Outturn	In MT	851.39	904.7	910.7	(
% age Reduction in Specific Total GHG I	Emissions (Scope – 1 &	2) since 20) 19-20 = 22	.4%	C

Total Specific GHG Emissions (Scope - 3)						
Year	GHG Emissions in MT of CO ₂ eq.	Specific GHG Emission in MT CO2 e per MT out-turn				
2019-20	90.7	0.11				
2020-21	47.5	0.05				
2021-22	68.71	0.07				

% Reduction in Specific GHG emission (Scope-3) since 2019-20 = 36.4%

With the improvement in Energy efficiency and Utilization of Renewable Solar energy, there is reduction in Green house gas intensity for Scope -1 emission intensity by 19.7%, Scope-2 emission intensity by 33.3% and Scope-3 emission intensity by 36.4% in last 03 years.

Specific GHG Inventorisation (in MT/Eq. Outturn of CO2 e)

GHG EMISSION INVENTORISATION

Carbon Neutral Approach

S.No	Emission/Offset scope	Total Emission /Offset (in MT of CO2)				
		2019-20	2020-21	2021-22		
1	Scope-1(both coal and thermal energy)	518.51	453.48	447.69		
2	Scope-2(electrical and renewable energy)	129.56	125.61	94.01		
3	Scope-3	90.7	47.5	68.71		
	Total Emission (A)	738.77	626.59	610.41		
1	Emission offset onsite renewable energy(B)	260.7	237	276.5		
2	Emission offset due to offsite solar & wind(C)	-	-	-		
3	Carbon sequestration from trees (D)	3	4	5		
	Total emission offset(E)=(B+C+D)	263.7	241	281.5		
	Net Emissions {F}=(A-E)	475.07	385.59	328.91		
	Carbon emission offset=(E/A)%	35.7%	38.5%	46.11%		

GHG MITIGATION EFFORTS :-

- **69 % substitution** of overall energy consumption from RE (Solar PV) achieved through installation of **300 KWp roof top Solar Plant**. Further installation of 200 KWp Solar power plant is under process at HQ level under RESCO Model.
- Online stack emission monitoring system (OCSMS) and Automatic Pollution control device (APCD) has been installed on Furnace.
- Implementing **Paperless working** by using of Railway's digital portals like **WISE, IRMMS, AIMS & E-office** etc.
- **100% Green Supply Chain** is implemented in procurement and disposal of material/scrap through IREPS.
- Emphasis is on **bulk purchase** of materials by increasing procurement powers of the officials and hence utilisation of full capacity of transport vehicles. Setting up of Divisional Store Depots having **three months stock holding capacity** to avoid frequent material logistics.
- Re-use of waste wherever possible. For e.g. Waste refused Oil and Ferrous & Non Ferrous Scrap used in foundry Shop ,Conversion of 19 Nos. Out lived NG coaches into Vista-Dome Coach, Conversion 37 scraped BG Axel in to NG axel, Dust / Scrap Bins & sculptures are made from shop generated waste.
- 300 staff quarters are available at out-skirt of workshop and around 100 staff commute through passenger trains being suburban pass holders thereby scope-3 emission via employees commute is negligible.
- Replacement of Diesel operated fork lifter with Battery operated fork lifter.

GREEN SUPPLY CHAIN MANAGEMENT

NORTHERN RAILWAY C&W CUM DSL STORE DEPOT, KALKA GREEN SUPPLY CHAIN POLICY

- ENCOURAGE SUPPLIERS TO OPT GREEN PRACTICES & GREEN CO CERTIFICATIONS.
- PROMOTE THE CONSERVATION OF NATURAL RESOURCES & LEGAL, STATUTORY & REGULATORY ENVIRONMENT COMPLAINCE.
- REDUCE THE OVERALL CARBON SIGNATURE AND THE IMPACT ON ENVIRONMENT BY MINIMIZING WASTE AND GREEN HOUSE GAS EMISSION WITH THE USE OF EFFICIENT PROCESSES, PRODUCTS AND SERVICES.

DISPLAY OF NG COACH ITEMS at C&W WORKSHOP STORE DEPOT KALKA FOR VENDORS

VARIOUS VANDER AWARNACE PROGRAME AT ORGANISATIONAL LEVEL

- RAILWAY EXHIBITION LUCKNOW APRIL, 2019
- RAIL MUSEUM, NEW DELHI MAY, 2019
- CII, CHANDIGARH MAY, 2019
- DLMW Patiala-MAY,2019

Assistant Materials Manager Northern Railway Kalka

- MSME LUDHIANA MAY, 2019
- VDM, RADDISON BLUE, JAMMU MAY, 2019
- RAIL MUSEUM, JANUARY,2020
- IREE-21, New Delhi, December 2021

Vendor Meet at Jammu 2019

Items of KSR displayed in IREE-21, New Delhi

Vendor Meet at Ambala Cantt 2019

GREEN SUPPLY CHAIN MANAGEMENT

mbengineering8@gmail.com

rail_udyog@yahoo.co.in

sknikunj@yahoo.com

asishchakraborty505@yahoo.com

raneyengg@gmail.com

anandlimeindustries@gmail.com

arun.tiwari95@yahoo.in

sumitk10@hotmail.com

ameyaa020@gmail.com

VENDOR TRAINING & AWARENESS PROGRAMME

7

8

9

10

11

12

13

14

15

NO. OF EMAIL FORWARDED TO VENDORS

SAMPLE OF MAIL/PAMPHLET

WE CARE FOR ENVIRONMENT SO WE ARE GOING FOR GreenCo RATING, WHEN WILL YOU!!

GO GREEN, OPT FOR GreenCo RATING

By 502 there made to 5.000 empassion in the exactly while Genetic Datageneous Law meeter of each strategy about, CD (try distribution) and the data 21 distribution of male hashes the datageneous processing the enviroping translatability is hadran in barrely strength the Genetic Direct Conference of the environment o

	 Pack it Green!
OING FOR	> Optimises environmenta -reponsible
NG	> Meet market criteria - performent
ps. Since it was launch	> Meet consumer choice of

Alse hadry young the one op entities, were now op an entities, were yours.

S	SOME OF THE FIRMS CONTACTED IN 2021-22							
S.No.	CODE	EMAIL ID						
1	A.D.ELECTRO STEEL CO.PVT.LTD - KOLKATA	adec@adelectrosteel.net						
2	HINDUSTAN WAGON - HOWRAH	hindustanwagon@rediffmail.co						
3	HARSH INDUSTRIES - MOHALI	harshind73@gmail.com						
4	G.B. SPRINGS PRIVATE LIMITED - DEHRADUN	gbslddn@gmail.com						
5	CHEMIN SPRINGS INDIA PRIVATE LIMITED - HARIDWAR	care@cheminsprings.com						
6	LAL BABA MACHINO IMPEX PVT.LTD KOLKATA	railway.lbmi@gmail.com						

M.B. ENGINEERING WORKS - HOWRAH

RAIL UDYOG - HOWRAH

RAMKRISHNA ENGINEERING

INDUSTRIES - HOWRAH

M G ENTERPRISES - KOLKATA

RANEY ENGINEERING CO. - HOWRAH

M/S ANAND LIME INDUSTRIES -KALKA

M/S TIWARI ENTERPRISES -HOWRAH

M/S SAM INDUSTRIES - HOWRAH

M/S AMEYAA - DELHI

USE OF ONLINE PORTAL INDIAN RAILWAY E-PROCUREMENT SYSTEM

ONLINE PROCUREMENT THROUGH DIGITAL PORTAL

	2019-20	2020-21	2021-22
E-PROCUREMENT (in No.)	114	71	82
E-PROCUREMENT (in Lac.)	130.44	47.91	79.48
GEM Procurement (in No.)	37	20	51
GEM Procurement (in Lac.)	36.90	2.47	31.74

Decrease in publishing of tenders on IREPS is due to shifting of general items procurement on GEM Portal.

Reduction of carbon in supply chain

	2019-20	2020-21	2021-22
No. of Consignments Received	431	193	241
No. of Travel Saved (in KM)	43100 KM	19300 KM	24100 KM
CO ₂ Emission Saved: (Emission factor 0.18931605 kg/km)	8.15 t	3.65 t	4.56 t

Due to implementation of online system firms representatives need not to visit this office. Taking average of 100 KM per receipt :

WASTE UTILIZATION & MANAGEMENT

कैरिज एव वैगन वर्कशाप उत्तर रेलवे. कालका

CARRIAGE & WAGON WORKSHOP NORTHERN RAILWAY, KALKA

WASTE MANAGEMENT POLICY

We at Carriage & Wagon Workshop kalka are committed to manage waste through environmentally and safe practices.

Our waste management policy is aimed to:-

1. Reduce, recycle and reuse the waste and effluent wherever practicable

- 2. Segregation, handling, storage, transportation and disposal of the generated waste in environment friendly and safe manner :
- 3. To comply with all waste management rules through creation awareness, training and involvement of staff.

Sonay Son12] Asstt. Works Manager

LIQUID & GAS WASTE MANAGEMENT SAMPLE COLLECTION OF WATER AT ETP & DETAILS OF TREATED WATER

SAMPLE COLLECTION OF STACK OF FURNACE & GENERAL AIR QUALITY

WASTE UTILIZATION & MANAGEMENT

SOLID	WAST	FE MA	NAGE	MENT	R	eplacement of Ray	v Material t	by Recy	cled Ma	ateria
TYPE OF SOLID	YEAR WISE QTY. (in MT)		METHOD OF	S	TYPE OF MATERIAL		YEAR WISE QUANTITY (IN MT			
WASTE	2019-20	2020 - 21	2021-22	DISPOSAL	N			2019 - 20	2020 - 21	2021 - 2
WASTE GENERATED IN WORKSHOP & THEIR DISPOSAL		1	Virgin Raw Material		555.125	600.174	579.453			
Ferrous Scarp (MT's)	186.8	186.1	203.48	Auction To Recycle	2	Recycle Raw Material		336.83	315.32	339.37
Non - Hazardous Waste (MT)	336.4	291.4	230.5	Auction To Recycle	3	Absolute Consumption C	f Raw material	891.955	915.494	918.823
Hazardous Waste (MT)	18.3	11.3	3.8	Auction to HSPCB	4	% Replacement of Raw ma material (Recycle Material	erial by recycle /Raw Material)	37.76%	34.44%	36.94%
Released Grease mixed with Kerosene Oil	0.015	0.012	0.017	Reused as lubricant for Rail Junction Points	5	Total Equivalent Outturn (MT) 851.39 904.7		910.66		
ZERO Value Waste	0.080	0.064	0.072	Send to MC dump Yard		336.83	315.32	33	39.37	
Hazardous Waste (Sludge)	0.423	0.371	0.502	Disposal through HSPCB approved recyclers		555 125	600.174	57	79 453	
WASTE COLLECTED	FROM DIVISIO	ON & USED IN	I FOUNDRY S	SHOP FOR CASTING		555.125		57	5.455	
ALUMINIUM SCRAP	18	0.91	40.4	WASTE COLLECTED EDOM		204020	2020 24	20	24.22	
C.I. SCRAP	65	45.6	82	DIVISION & USED IN		2019 - 20	2020 - 21	20	21-22	
Released / Refused Oil	44.34	37.54	25.75	FOUNDRY SHOP FOR CASTING		Virgin Raw	Material Re	cycle Mater	ial	

Manufacturing of Pre-shortener

Objective:

To reduce manufacturing time, production cost, and material costs along with conservation of energy by changing the design of pattern of Aluminum Bar casting from circular shape to octagonal shape. Only this change in pattern shape avoids the machining work & saves electrical energy involved in the machining process. This also saves material due to the less diameter of octagonal bar.

Date of implementation : FEB-2019

Saving:

Energy:

Time saved in machining work involved in conversion of circular to octagonal = 5.4 Min per piece.

Load of Motor of milling machine = 7.5 KW

Total electrical energy save per unit product = 0.68 Kwh per piece **Total Time :**

Total Time save = Time taken (previously) - time taken (mod.)

= 110 Min-35 Min = 75 Minutes per unit product

Material: @ 50 % less material use

Area of Bar (Pervious) – Area of Octagonal Bar = 491 Sq MM – 237 Sq MM = **254 Sq. MM (50%)**

Previously Use of circular Al Bar

Provision of Fabricated type pulley in NG Coaches

Objective: To **overcome frequent failure** of CI cast type pulley (Wt -52 kg) and **save thermal energy** & **man Hours** used for casting of pulley as existing CI cast type pulley were removed and use **fabricated** type pulley (wt - 28.5 kg) for **alternator drive**.

Savings:

Thermal Energy: @104kg coal/per pulley = 1.68 GJ per pulley Total saving for 125 pulley = 210 GJ

Raw Material: @ 23.5 kg per pulley Total saving for 125 pulley = **2938 Kg**

Other Advantage:

Long life & easy to repair / replacement
Reduce the Tare weight of coach by 23.5 kg
Save CO₂ emission as easy transportation

Existing Cast Iron Pulley (wt - 52 kg.)

Provision of Solar Panel in NG coach of KVR / KSR

Objective: To minimise Carbon Emission as use of Renewal Energy for hotel Load of NG Coach and save electrical energy

Date of implementation : OCT-2019 Savings:

Energy:

365 days @ 4kWh/day/coach = 1460 kWh Total saving for 1 coach = 1460 kWh Annual Monetary Savings = **Rs. 12629**/-

Carbon credit : @ 820 g/kWh = 1197 Kg

Waste : Reduce hazardous waste by 300 kg

Monetary : Rs. 50 K in initial Investment

Coach weight : Reduce the Tare weight of coach by 0.5 MT

Poly crystalline flexi type Solar Panel on Roof of NG Coach/KSR

Provision of Bio-Digestive tanks in NG coaches of KSR (UNESCO Heritage site)

Objective:

To Achieve **Zero - defecation** on ground & support to the IR project "Clean Rail-Clean India"

Advantages :

- Reduce environment pollution
- Railway Stations of UNESCO world heritage site and other NG Section is being now become clean which support "Swachh Bharat Abhiyan" of Government of India.
- Improved Aesthetics at Railway Stations Railway Stations of UNESCO world heritage site
- Provides healthy & hygienic atmosphere to Track maintenance staff & those who manually clean the toilet Seat at the platforms
- Preventing damages to tracks due to Corrosion

TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

ON LINE MONITORING OF SOLAR POWER GENERATION

MICRO MONITORING OF MACHINE

ON LINE monitoring of solar generation of On site PV SOLAR Panel, Cap; 300 KWp

20 Nos. energy meters are provided in energy intensive machines for micro level monitoring

NORTHERN RAILWAY WORKSHOP 1903 CALLEN FITTER

TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

WEEKLY PERFORMANCE REVIEW MEETING CHAIRED BY AWM/KLK (CONDUCTED EVERY FRIDAY TO REVIEW ENERGY PERFORMANCE AND OUTTURN OF WORKSHOP)

	KAIZEN				
	S N	Suggestion/Activities	Environmental saving	Suggested by	Year of imp
	1	Use of timer to minimise operational time of wall mounted air circulators	Save 3 hrs/day operational time	Sh. Gurdeep Singh, JE	2022
	2	Change in design (Circular to Octagonal) of mould of Casting of Al Bar for Pre shortener	Save material 50% & 0.68 Kwh electrical energy per piece	Sh. Baldev Singh	2021
	3	Renovation of Battery Section	Minimise the soil pollution, improve working Environment	Sh. Gagan Deep	2021
	4	Shower testing for testing of leakage from coach shell	Improve safety of employee, save water	Sh. Surender Kumar, SSE	2021
and the second	5	Use of Bio Toilet In NG Coach	Minimize environment pollution, Provides healthy & hygienic atmosphere ,	Sh. Gurdeep Singh, JE	2021
	6	Use of LED Light fitting in NG Coach	80% Save energy, minimise hazardous wste generation	Sh. Dev Raj, SSE	2019
	7	Use of fabricated pulley in NG Coach	Save Energy & raw martial.	Sh. Mukesh meena, SSE	2019
	8	Use of Solar panel in NG Coach	Improve safety, Minimize the use of LA Battery, save energy,	Sh. Dhrub Kumar, SSE	2019

IMPLEMENTATION OF ISO 50001 / GREEN CO/IGBC

KALKA WORKSHOP ACHIEVED GOLD GREEN CO RATING

<image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<text><text><text><text><text><list-item><list-item><list-item><list-item><text><text><text><list-item><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></list-item></text></text></text></list-item></list-item></list-item></list-item></text></text></text></text></text>
--	--

ALLOCATION OF FUNDS FOR ENERGY CONSERVATION PROJECT

AWARDS & ACCOLADES

renewal Energy Department (Haryana) & HAREDA

- Learn About Various Techniques & Ideas To Control & Monitoring Of Wastage Of Energy.
- How Maintain The Energy Score Card Of Machine And Employee.
- Kaizen Philosphy And Its Benefits.
- Role Of Training Programme And Evaluation Of Its Impact On Energy Saving.
- Know About Next Gen Energy Efficient Appliances.
- Learn The Daily Variance Analysis & Its Benefits.
- Better Awareness Among Employees.
- Motivate For Further Improvement In Own Idea To Save Energy.

PLEASE CONTRIBUTE TO SAVE ENEGRY

Azadi _{Ka} Amrit Mahotsav

